Hands-on Exercise 4: Spatial Point Patterns Analysis-spatstat methods

Dr. Kam Tin Seong, Associate Professor of Information Systems (Practice) https://www.smu.edu.sg/faculty/profile/9618/KAM-Tin-Seong (School of Computing and Information Systems, Singapore Management University)https://scis.smu.edu.sg/
2021-05-25

Overview

Spatial Point Pattern Analysis is the evaluation of the pattern or distribution, of a set of points on a surface. The point can be location of:

In this hands-on exercise, you will gain hands-on experience on using appropriate functions of spatstat to perform. The case study aims to discover the spatial point processes of childecare centres in Singapore.

The research questions

The specific questions we would like to answer are as follows:

The data

To provide answers to the questions above, three data sets will be used. They are:

Installing and Loading the R packages

In this hands-on exercise, five R packages will be used, they are:

-rgdal, which provides bindings to the ‘Geospatial’ Data Abstraction Library (GDAL) (>= 1.11.4) and access to projection/transformation operations from the PROJ library. In this exercise, rgdal will be used to import geospatial data in R and store as sp objects.

Use the code chunk below to install and launch the five R packages.

packages = c('rgdal', 'maptools', 'raster','spatstat', 'tmap')
for (p in packages){
if(!require(p, character.only = T)){
install.packages(p)
}
library(p,character.only = T)
}

Spatial Data Wrangling

Importing the spatial data

In this section, readOGR() of rgdal package will be used to import the three geospatial data in R’s spatialpolygonsdataframe.

childcare <- readOGR(dsn = "data", layer="CHILDCARE")
OGR data source with driver: ESRI Shapefile 
Source: "D:\tskam\GeoDSA\Hands-on_Ex\Hands-on_Ex04\data", layer: "CHILDCARE"
with 1312 features
It has 18 fields
sg <- readOGR(dsn = "data", layer="CostalOutline")
OGR data source with driver: ESRI Shapefile 
Source: "D:\tskam\GeoDSA\Hands-on_Ex\Hands-on_Ex04\data", layer: "CostalOutline"
with 60 features
It has 4 fields
mpsz <- readOGR(dsn = "data", layer="MP14_SUBZONE_WEB_PL")
OGR data source with driver: ESRI Shapefile 
Source: "D:\tskam\GeoDSA\Hands-on_Ex\Hands-on_Ex04\data", layer: "MP14_SUBZONE_WEB_PL"
with 323 features
It has 15 fields

Before we can use these data for analysis, it is important for us to ensure that they are projected in same projection system. We can retrieve the information of these geospatial data by using the code chunk below.

crs(childcare)
CRS arguments:
 +proj=tmerc +lat_0=1.36666666666667 +lon_0=103.833333333333
+k=1 +x_0=28001.642 +y_0=38744.572 +datum=WGS84 +units=m
+no_defs 
crs(mpsz)
CRS arguments:
 +proj=tmerc +lat_0=1.36666666666667 +lon_0=103.833333333333
+k=1 +x_0=28001.642 +y_0=38744.572 +datum=WGS84 +units=m
+no_defs 
crs(sg)
CRS arguments:
 +proj=tmerc +lat_0=1.36666666666667 +lon_0=103.833333333333
+k=1 +x_0=28001.642 +y_0=38744.572 +datum=WGS84 +units=m
+no_defs 

Next, we can examine the imported geospatial data by using plot().

par(mfrow=c(1,3))
plot(childcare)
plot(mpsz)
plot(sg)

Alternatively, we can also plotting these three geospatial data in one plot by using code chunk below.

plot(sg, border="lightgrey")
plot(sg, add=TRUE)
plot(childcare, add=TRUE )

We can also prepare an interactive pin map by using the code chunk below.

tmap_mode('view')
tm_shape(childcare)+
  tm_dots()
tmap_mode('plot')

Lastly, let us examine the childcare SpatialPointsDataFrame.

childcare
class       : SpatialPointsDataFrame 
features    : 1312 
extent      : 11203.01, 45404.24, 25667.6, 49300.88  (xmin, xmax, ymin, ymax)
crs         : +proj=tmerc +lat_0=1.36666666666667 +lon_0=103.833333333333 +k=1 +x_0=28001.642 +y_0=38744.572 +datum=WGS84 +units=m +no_defs 
variables   : 18
names       : OBJECTID, ADDRESSBLO, ADDRESSBUI, ADDRESSPOS,                                                                          ADDRESSSTR, ADDRESSTYP,          DESCRIPTIO,                                                                           HYPERLINK, LANDXADDRE, LANDYADDRE,                    NAME, PHOTOURL, ADDRESSFLO,          INC_CRC, FMEL_UPD_D, ... 
min values  :        1,         NA,         NA,     038983,                                                1 & 3 Stratton Road SINGAPORE 806787,         NA, Child Care Services, http://www.childcarelink.gov.sg/ccls/chdcentpart/ChdCentPartLnk.jsp?centreCd=EB0001,          0,          0,    3-IN-1 FAMILY CENTRE,       NA,         NA, 000FD4E317754866, 2016/12/23, ... 
max values  :     1312,         NA,         NA,     829646, UPPER BASEMENT LEVEL WEST WING TERMINAL 1 SINGAPORE CHANGI AIRPORT SINGAPORE 819642,         NA, Child Care Services, http://www.childcarelink.gov.sg/ccls/chdcentpart/ChdCentPartLnk.jsp?centreCd=YW0150,          0,          0, ZEE SCHOOLHOUSE PTE LTD,       NA,         NA, FFC5A1F137748668, 2017/03/16, ... 

Converting the spatial point data frame into generic sp format

spatstat requires the analytical data in ppp object form. There is no direct way to convert a SpatialDataFrame into ppp object. We need to convert the SpatialDataFrame into Spatial object first.

The codes below will convert the SpatialPoint and SpatialPolygon data frame into generic spatialpoints and spatialpolygons objects.

childcare_sp <- as(childcare, "SpatialPoints")
sg_sp <- as(sg, "SpatialPolygons")

Do you know what are the differences between SpatialPoints object and SpatialPointDataFrame object?

Let us plot the childcare_sp data by using the code chun below.

plot(childcare_sp)

Note that the output map look similar to the earlier plot.

How about we view the properties of childcare_sp data object by using the code chun below?

childcare_sp
class       : SpatialPoints 
features    : 1312 
extent      : 11203.01, 45404.24, 25667.6, 49300.88  (xmin, xmax, ymin, ymax)
crs         : +proj=tmerc +lat_0=1.36666666666667 +lon_0=103.833333333333 +k=1 +x_0=28001.642 +y_0=38744.572 +datum=WGS84 +units=m +no_defs 

Can you see the different now?

Converting the generic sp format into spatstat’s ppp format

Now, we will use as.ppp() function of spatstat to convert the spatial data into spatstat’s ppp object format.

childcare_ppp <- as(childcare_sp, "ppp")
childcare_ppp
Planar point pattern: 1312 points
window: rectangle = [11203.01, 45404.24] x [25667.6, 49300.88] units

Now, let us plot childcare_ppp and examine the different.

plot(childcare_ppp)

You can take a quick look at the summary statistics of the newly created ppp object by using the code chunk below.

summary(childcare_ppp)
Planar point pattern:  1312 points
Average intensity 1.623186e-06 points per square unit

*Pattern contains duplicated points*

Coordinates are given to 3 decimal places
i.e. rounded to the nearest multiple of 0.001 units

Window: rectangle = [11203.01, 45404.24] x [25667.6, 49300.88] units
                    (34200 x 23630 units)
Window area = 808287000 square units

Notice the warning message about duplicates. In spatial point patterns analysis an issue of significant is the presence of duplicates. The statistical methodology used for spatial point patterns processes is based largely on the assumption that process are simple, that is, that the points cannot be coincident.

Handling duplicated points

We can check the duplication in a ppp object by using the code chunk below.

any(duplicated(childcare_ppp))
[1] TRUE

To count the number of coindicence point, we will use the multiplicity() function as shown in the code chunk below.

multiplicity(childcare_ppp)
   1    2    3    4    5    6    7    8    9   10   11   12   13   14 
   1    1    4    1    1    1    1    1    1    1    1    1    1    1 
  15   16   17   18   19   20   21   22   23   24   25   26   27   28 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1 
  29   30   31   32   33   34   35   36   37   38   39   40   41   42 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1 
  43   44   45   46   47   48   49   50   51   52   53   54   55   56 
   3    1    1    1    1    1    1    1    1    1    1    1    1    1 
  57   58   59   60   61   62   63   64   65   66   67   68   69   70 
   1    2    1    1    1    1    1    1    1    1    2    1    1    1 
  71   72   73   74   75   76   77   78   79   80   81   82   83   84 
   1    1    1    7    1    1    1    1    1    1    1    1    1    1 
  85   86   87   88   89   90   91   92   93   94   95   96   97   98 
   2    1    1    1    1    1    1    1    1    1    1    1    2    1 
  99  100  101  102  103  104  105  106  107  108  109  110  111  112 
   1    1    1    1    1    2    1    1    1    1    1    1    1    1 
 113  114  115  116  117  118  119  120  121  122  123  124  125  126 
   1    1    1    1    1    1    2    1    1    1    1    5    1    1 
 127  128  129  130  131  132  133  134  135  136  137  138  139  140 
   1    1    2    1    1    1    1    1    1    2    1    1    1    1 
 141  142  143  144  145  146  147  148  149  150  151  152  153  154 
   1    1    1    1    1    1    1    1    1    1    1    1    1    2 
 155  156  157  158  159  160  161  162  163  164  165  166  167  168 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1 
 169  170  171  172  173  174  175  176  177  178  179  180  181  182 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1 
 183  184  185  186  187  188  189  190  191  192  193  194  195  196 
   1    1    7    1    1    1    1    1    1    1    1    1    1    1 
 197  198  199  200  201  202  203  204  205  206  207  208  209  210 
   5    1    1    1    1    1    1    2    1    1    1    1    1    1 
 211  212  213  214  215  216  217  218  219  220  221  222  223  224 
   1    1    1    1    1    1    1    1    1    1    2    1    1    1 
 225  226  227  228  229  230  231  232  233  234  235  236  237  238 
   1    1    2    1    1    1    1    1    1    1    1    1    1    1 
 239  240  241  242  243  244  245  246  247  248  249  250  251  252 
   1    1    1    1    1    1    1    1    1    1    1    2    1    1 
 253  254  255  256  257  258  259  260  261  262  263  264  265  266 
   1    1    2    2    1    2    1    1    3    1    1    1    1    1 
 267  268  269  270  271  272  273  274  275  276  277  278  279  280 
   2    1    1    1    1    1    1    1    7    1    1    1    1    2 
 281  282  283  284  285  286  287  288  289  290  291  292  293  294 
   1    2    1    1    2    1    1    1    1    1    1    1    1    1 
 295  296  297  298  299  300  301  302  303  304  305  306  307  308 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1 
 309  310  311  312  313  314  315  316  317  318  319  320  321  322 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1 
 323  324  325  326  327  328  329  330  331  332  333  334  335  336 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1 
 337  338  339  340  341  342  343  344  345  346  347  348  349  350 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1 
 351  352  353  354  355  356  357  358  359  360  361  362  363  364 
   1    1    4    1    1    1    1    1    1    2    1    1    1    1 
 365  366  367  368  369  370  371  372  373  374  375  376  377  378 
   1    1    1    1    1    1    1    2    1    1    1    1    1    1 
 379  380  381  382  383  384  385  386  387  388  389  390  391  392 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1 
 393  394  395  396  397  398  399  400  401  402  403  404  405  406 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1 
 407  408  409  410  411  412  413  414  415  416  417  418  419  420 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1 
 421  422  423  424  425  426  427  428  429  430  431  432  433  434 
   1    1    1    1    1    1    1    1    1    1    1    1    1    7 
 435  436  437  438  439  440  441  442  443  444  445  446  447  448 
   1    2    1    1    1    1    1    1    1    1    1    1    1    1 
 449  450  451  452  453  454  455  456  457  458  459  460  461  462 
   1    3    1    1    1    1    1    1    1    1    1    2    2    2 
 463  464  465  466  467  468  469  470  471  472  473  474  475  476 
   1    1    1    1    1    1    1    1    1    2    1    1    1    1 
 477  478  479  480  481  482  483  484  485  486  487  488  489  490 
   4    1    1    1    1    1    1    1    1    1    3    1    1    1 
 491  492  493  494  495  496  497  498  499  500  501  502  503  504 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1 
 505  506  507  508  509  510  511  512  513  514  515  516  517  518 
   1    1    3    1    1    1    1    1    1    1    1    1    1    1 
 519  520  521  522  523  524  525  526  527  528  529  530  531  532 
   1    1    4    1    4    1    1    1    2    1    1    1    1    1 
 533  534  535  536  537  538  539  540  541  542  543  544  545  546 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1 
 547  548  549  550  551  552  553  554  555  556  557  558  559  560 
   1    1    1    1    1    1    1    3    1    1    1    1    1    1 
 561  562  563  564  565  566  567  568  569  570  571  572  573  574 
   1    1    1    1    4    1    1    1    1    1    1    1    1    1 
 575  576  577  578  579  580  581  582  583  584  585  586  587  588 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1 
 589  590  591  592  593  594  595  596  597  598  599  600  601  602 
   1    2    1    1    1    1    1    1    1    1    1    1    1    1 
 603  604  605  606  607  608  609  610  611  612  613  614  615  616 
   2    1    1    1    1    1    1    1    1    1    1    1    1    1 
 617  618  619  620  621  622  623  624  625  626  627  628  629  630 
   1    1    1    2    1    1    1    1    1    1    1    1    1    1 
 631  632  633  634  635  636  637  638  639  640  641  642  643  644 
   1    1    1    1    2    1    1    7    1    1    1    1    4    1 
 645  646  647  648  649  650  651  652  653  654  655  656  657  658 
   1    1    2    1    1    1    1    1    1    1    1    1    1    1 
 659  660  661  662  663  664  665  666  667  668  669  670  671  672 
   1    1    1    1    1    1    1    1    1    1    1    2    1    3 
 673  674  675  676  677  678  679  680  681  682  683  684  685  686 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1 
 687  688  689  690  691  692  693  694  695  696  697  698  699  700 
   1    1    2    1    1    1    1    1    1    1    1    1    1    1 
 701  702  703  704  705  706  707  708  709  710  711  712  713  714 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1 
 715  716  717  718  719  720  721  722  723  724  725  726  727  728 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1 
 729  730  731  732  733  734  735  736  737  738  739  740  741  742 
   1    1    1    1    1    1    1    1    4    1    1    1    1    1 
 743  744  745  746  747  748  749  750  751  752  753  754  755  756 
   1    7    1    1    1    1    1    1    1    1    1    1    1    1 
 757  758  759  760  761  762  763  764  765  766  767  768  769  770 
   1    1    1    1    1    4    1    2    2    1    1    1    1    1 
 771  772  773  774  775  776  777  778  779  780  781  782  783  784 
   2    1    1    1    2    1    1    1    1    1    1    1    2    1 
 785  786  787  788  789  790  791  792  793  794  795  796  797  798 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1 
 799  800  801  802  803  804  805  806  807  808  809  810  811  812 
   1    1    1    1    1    1    5    1    1    1    1    1    1    1 
 813  814  815  816  817  818  819  820  821  822  823  824  825  826 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1 
 827  828  829  830  831  832  833  834  835  836  837  838  839  840 
   1    1    1    1    1    1    1    1    2    1    1    1    1    1 
 841  842  843  844  845  846  847  848  849  850  851  852  853  854 
   1    1    1    1    1    1    1    1    3    1    1    1    1    1 
 855  856  857  858  859  860  861  862  863  864  865  866  867  868 
   1    1    1    1    2    1    1    1    1    1    1    1    1    1 
 869  870  871  872  873  874  875  876  877  878  879  880  881  882 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1 
 883  884  885  886  887  888  889  890  891  892  893  894  895  896 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1 
 897  898  899  900  901  902  903  904  905  906  907  908  909  910 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1 
 911  912  913  914  915  916  917  918  919  920  921  922  923  924 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1 
 925  926  927  928  929  930  931  932  933  934  935  936  937  938 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1 
 939  940  941  942  943  944  945  946  947  948  949  950  951  952 
   1    1    1    1    1    3    1    1    1    1    1    2    1    1 
 953  954  955  956  957  958  959  960  961  962  963  964  965  966 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1 
 967  968  969  970  971  972  973  974  975  976  977  978  979  980 
   1    1    1    1    1    1    2    1    1    1    1    1    1    1 
 981  982  983  984  985  986  987  988  989  990  991  992  993  994 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1 
 995  996  997  998  999 1000 1001 1002 1003 1004 1005 1006 1007 1008 
   1    5    1    1    1    1    1    1    1    1    1    1    1    1 
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1 
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1 
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1 
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 
   1    1    5    1    1    1    1    1    1    1    1    1    1    1 
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 
   1    1    1    1    4    1    1    1    1    1    1    1    1    1 
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1 
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1 
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1 
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1 
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1 
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 
   1    1    1    1    2    1    1    1    1    1    1    1    1    1 
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1 
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 
   1    1    1    1    1    1    1    1    1    1    4    1    1    1 
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 
   1    1    1    1    2    1    1    1    1    1    1    1    1    1 
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1 
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1 
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1 
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 
   1    1    2    1    1    1    1    4    2    1    1    1    1    1 
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 
   1    1    1    1    1    1    2    1    1    1    1    1    1    1 
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 
   1    1    1    1    1    1    1    1    1    1    1    1    1    1 
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 
   1    2    1    1    1    1    1    1    1    1    1    1    1    2 
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 
   1    1    1    1    1    1    1    1    7    2 

If we want to know how many locations have more than one point event, we can use the code chunk below.

sum(multiplicity(childcare_ppp) > 1)
[1] 85

The output shows that there are 85 duplicated point events.

To view the locations of these duplicate point events, we will plot childcare data by using the code chunk below.

tmap_mode("plot")
tm_shape(childcare) +
  tm_dots(alpha=0.4, size=0.05)
tmap_mode("plot")

There are three ways to overcome this problem. The easiest way is to delete the duplicates. But, that will also mean that some useful point events will be lost.

The second solution is use jittering, which will add a small perturbation to the duplicate points so that they do not occupy the exact same space.

The third solution is to make each point “unique” and then attach the duplicates of the points to the patterns as marks, as attributes of the points. Then you would need analytical techniques that take into account these marks.

The code chunk below implements the jittering approach.

childcare_ppp_jit <- rjitter(childcare_ppp, retry=TRUE, nsim=1, drop=TRUE)

plot(childcare_ppp_jit)

any(duplicated(childcare_ppp_jit))
[1] FALSE

Notice the difference with the original plot. Can you see how the circumference do not overlap perfectly now?

Creating owin

When analysing spatial point patterns, it is a good practice to confine the analysis with a geographical area like Singapore boundary. In spatstat, an object called owin is specially designed to represent this polygonal region.

The code chunk below is used to covert sg SpatialPolygon object into owin object of spatstat.

sg_owin <- as(sg_sp, "owin")

The ouput object can be displayed by using plot() and summary() functions.

plot(sg_owin)

summary(sg_owin)
Window: polygonal boundary
60 separate polygons (no holes)
            vertices        area relative.area
polygon 1         38 1.56140e+04      2.09e-05
polygon 2        735 4.69093e+06      6.27e-03
polygon 3         49 1.66986e+04      2.23e-05
polygon 4         76 3.12332e+05      4.17e-04
polygon 5       5141 6.36179e+08      8.50e-01
polygon 6         42 5.58317e+04      7.46e-05
polygon 7         67 1.31354e+06      1.75e-03
polygon 8         15 4.46420e+03      5.96e-06
polygon 9         14 5.46674e+03      7.30e-06
polygon 10        37 5.26194e+03      7.03e-06
polygon 11        53 3.44003e+04      4.59e-05
polygon 12        74 5.82234e+04      7.78e-05
polygon 13        69 5.63134e+04      7.52e-05
polygon 14       143 1.45139e+05      1.94e-04
polygon 15       165 3.38736e+05      4.52e-04
polygon 16       130 9.40465e+04      1.26e-04
polygon 17        19 1.80977e+03      2.42e-06
polygon 18        16 2.01046e+03      2.69e-06
polygon 19        93 4.30642e+05      5.75e-04
polygon 20        90 4.15092e+05      5.54e-04
polygon 21       721 1.92795e+06      2.57e-03
polygon 22       330 1.11896e+06      1.49e-03
polygon 23       115 9.28394e+05      1.24e-03
polygon 24        37 1.01705e+04      1.36e-05
polygon 25        25 1.66227e+04      2.22e-05
polygon 26        10 2.14507e+03      2.86e-06
polygon 27       190 2.02489e+05      2.70e-04
polygon 28       175 9.25904e+05      1.24e-03
polygon 29      1993 9.99217e+06      1.33e-02
polygon 30        38 2.42492e+04      3.24e-05
polygon 31        24 6.35239e+03      8.48e-06
polygon 32        53 6.35791e+05      8.49e-04
polygon 33        41 1.60161e+04      2.14e-05
polygon 34        22 2.54368e+03      3.40e-06
polygon 35        30 1.08382e+04      1.45e-05
polygon 36       327 2.16921e+06      2.90e-03
polygon 37       111 6.62927e+05      8.85e-04
polygon 38        90 1.15991e+05      1.55e-04
polygon 39        98 6.26829e+04      8.37e-05
polygon 40       415 3.25384e+06      4.35e-03
polygon 41       222 1.51142e+06      2.02e-03
polygon 42       107 6.33039e+05      8.45e-04
polygon 43         7 2.48299e+03      3.32e-06
polygon 44        17 3.28303e+04      4.38e-05
polygon 45        26 8.34758e+03      1.11e-05
polygon 46       177 4.67446e+05      6.24e-04
polygon 47        16 3.19460e+03      4.27e-06
polygon 48        15 4.87296e+03      6.51e-06
polygon 49        66 1.61841e+04      2.16e-05
polygon 50       149 5.63430e+06      7.53e-03
polygon 51       609 2.62570e+07      3.51e-02
polygon 52         8 7.82256e+03      1.04e-05
polygon 53       976 2.33447e+07      3.12e-02
polygon 54        55 8.25379e+04      1.10e-04
polygon 55       976 2.33447e+07      3.12e-02
polygon 56        61 3.33449e+05      4.45e-04
polygon 57         6 1.68410e+04      2.25e-05
polygon 58         4 9.45963e+03      1.26e-05
polygon 59        46 6.99702e+05      9.35e-04
polygon 60        13 7.00873e+04      9.36e-05
enclosing rectangle: [2663.93, 56047.79] x [16357.98, 50244.03] units
                     (53380 x 33890 units)
Window area = 748741000 square units
Fraction of frame area: 0.414

Combining childcare points and the study area

By using the code below, we are able to extract childcare that is within the specific region to do our analysis later on.

childcareSG_ppp = childcare_ppp[sg_owin]

Here we plot the combined childcare point and Punggol region to prove that it works

plot(childcareSG_ppp)

summary(childcareSG_ppp)
Planar point pattern:  1312 points
Average intensity 1.752274e-06 points per square unit

*Pattern contains duplicated points*

Coordinates are given to 3 decimal places
i.e. rounded to the nearest multiple of 0.001 units

Window: polygonal boundary
60 separate polygons (no holes)
            vertices        area relative.area
polygon 1         38 1.56140e+04      2.09e-05
polygon 2        735 4.69093e+06      6.27e-03
polygon 3         49 1.66986e+04      2.23e-05
polygon 4         76 3.12332e+05      4.17e-04
polygon 5       5141 6.36179e+08      8.50e-01
polygon 6         42 5.58317e+04      7.46e-05
polygon 7         67 1.31354e+06      1.75e-03
polygon 8         15 4.46420e+03      5.96e-06
polygon 9         14 5.46674e+03      7.30e-06
polygon 10        37 5.26194e+03      7.03e-06
polygon 11        53 3.44003e+04      4.59e-05
polygon 12        74 5.82234e+04      7.78e-05
polygon 13        69 5.63134e+04      7.52e-05
polygon 14       143 1.45139e+05      1.94e-04
polygon 15       165 3.38736e+05      4.52e-04
polygon 16       130 9.40465e+04      1.26e-04
polygon 17        19 1.80977e+03      2.42e-06
polygon 18        16 2.01046e+03      2.69e-06
polygon 19        93 4.30642e+05      5.75e-04
polygon 20        90 4.15092e+05      5.54e-04
polygon 21       721 1.92795e+06      2.57e-03
polygon 22       330 1.11896e+06      1.49e-03
polygon 23       115 9.28394e+05      1.24e-03
polygon 24        37 1.01705e+04      1.36e-05
polygon 25        25 1.66227e+04      2.22e-05
polygon 26        10 2.14507e+03      2.86e-06
polygon 27       190 2.02489e+05      2.70e-04
polygon 28       175 9.25904e+05      1.24e-03
polygon 29      1993 9.99217e+06      1.33e-02
polygon 30        38 2.42492e+04      3.24e-05
polygon 31        24 6.35239e+03      8.48e-06
polygon 32        53 6.35791e+05      8.49e-04
polygon 33        41 1.60161e+04      2.14e-05
polygon 34        22 2.54368e+03      3.40e-06
polygon 35        30 1.08382e+04      1.45e-05
polygon 36       327 2.16921e+06      2.90e-03
polygon 37       111 6.62927e+05      8.85e-04
polygon 38        90 1.15991e+05      1.55e-04
polygon 39        98 6.26829e+04      8.37e-05
polygon 40       415 3.25384e+06      4.35e-03
polygon 41       222 1.51142e+06      2.02e-03
polygon 42       107 6.33039e+05      8.45e-04
polygon 43         7 2.48299e+03      3.32e-06
polygon 44        17 3.28303e+04      4.38e-05
polygon 45        26 8.34758e+03      1.11e-05
polygon 46       177 4.67446e+05      6.24e-04
polygon 47        16 3.19460e+03      4.27e-06
polygon 48        15 4.87296e+03      6.51e-06
polygon 49        66 1.61841e+04      2.16e-05
polygon 50       149 5.63430e+06      7.53e-03
polygon 51       609 2.62570e+07      3.51e-02
polygon 52         8 7.82256e+03      1.04e-05
polygon 53       976 2.33447e+07      3.12e-02
polygon 54        55 8.25379e+04      1.10e-04
polygon 55       976 2.33447e+07      3.12e-02
polygon 56        61 3.33449e+05      4.45e-04
polygon 57         6 1.68410e+04      2.25e-05
polygon 58         4 9.45963e+03      1.26e-05
polygon 59        46 6.99702e+05      9.35e-04
polygon 60        13 7.00873e+04      9.36e-05
enclosing rectangle: [2663.93, 56047.79] x [16357.98, 50244.03] units
                     (53380 x 33890 units)
Window area = 748741000 square units
Fraction of frame area: 0.414

First-order Spatial Point Patterns Analysis

In this section, you will learn how to perform first-order SPPA by using spatstat package. The hands-on exercise will focus on:

Kernel Density Estimation

In this section, you will learn how to compute the kernel density estimation of childcare services in Singapore.

Computing kernel density estimation using automatic bandwidth selection method

The code chunk below computes a kernel density by using the following configurations of density() of spatstat: - bw.diggle() automatic bandwidth selection method. Other recommended methods are bw.CvL(), bw.scott() or bw.ppl().
- The smoothing kernel used is gaussian, which is the default. Other smoothing methods are: “epanechnikov”, “quartic” or “disc”.
- The intensity estimate is corrected for edge effect bias by using method described by Jones (1993) and Diggle (2010, equation 18.9). The default is FALSE.

kde_childcareSG_bw <- density(childcareSG_ppp,
                              sigma=bw.diggle,
                              edge=TRUE,
                            kernel="gaussian") 
bw <- bw.diggle(childcareSG_ppp)
bw
   sigma 
298.4095 

The plot() function of Base R is then used to display the kernel density derived.

plot(kde_childcareSG_bw)

The density values of the output range from 0 to 0.000035 which is way too small to comprehend. This is because the default unit of measurement of svy21 is in meter. As a result, the density values computed is in “number of points per square meter”.

In the code chunk below, rescale() is used to covert the unit of measurement from meter to kilometer.

childcareSG_ppp.km <- rescale(childcareSG_ppp, 1000, "km")

Now, we can re-run density() using the resale data set and plot the output kde map.

kde_childcareSG.bw <- density(childcareSG_ppp.km, sigma=bw.diggle, edge=TRUE, kernel="gaussian")
plot(kde_childcareSG.bw)

Notice that output image looks identical to the earlier version, the only changes in the data values (refer to the legend).

Working with different automatic badwidth methods

Beside bw.diggle(), there are three other spatstat functions can be used to determine the bandwidth, they are: bw.CvL(), bw.scott(), and bw.ppl().

Let us take a look at the bandwidth return by these automatic bandwidth calculation methods by using the code chunk below.

 bw.CvL(childcareSG_ppp.km)
   sigma 
3.080455 
bw.scott(childcareSG_ppp.km)
 sigma.x  sigma.y 
2.303178 1.492997 
bw.ppl(childcareSG_ppp.km)
    sigma 
0.3310477 
bw.diggle(childcareSG_ppp.km)
    sigma 
0.2984095 

Baddeley et. (2016) suggested the use of the bw.ppl() algorithm because in ther experience it tends to produce the more appropriate values when the pattern consists predominantly of tight clusters. But they also insist that if the purpose of once study is to detect a single tight cluster in the midst of random noise then the bw.diggle() method seems to work best.

The code chunk beow will be used to compare the output of using bw.diggle and bw.ppl methods.

kde_childcareSG.ppl <- density(childcareSG_ppp.km, sigma=bw.ppl, edge=TRUE, kernel="gaussian")
par(mfrow=c(1,2))
plot(kde_childcareSG.bw, main = "bw.diggle")
plot(kde_childcareSG.ppl, main = "bw.ppl")

Working with different kernel methods

By default, the kernel method used in density.ppp() is gaussian. But there are three other options, namely: Epanechnikov, Quartic and Dics.

The code chunk below will be used to compute three more kernel density estimations by using these three kernel function.

par(mfrow=c(1,2))
plot(density(childcareSG_ppp.km, sigma=bw.ppl, edge=TRUE, kernel="gaussian"), main="Gaussian")
plot(density(childcareSG_ppp.km, sigma=bw.ppl, edge=TRUE, kernel="epanechnikov"), main="Epanechnikov")

par(mfrow=c(1,2))
plot(density(childcareSG_ppp.km, sigma=bw.ppl, edge=TRUE, kernel="quartic"), main="Quartic")
plot(density(childcareSG_ppp.km, sigma=bw.ppl, edge=TRUE, kernel="disc"), main="Disc")

Fixed and Adaptive KDE

Computing KDE by using fixed bandwidth

Next, you will compute a density map by defining a bandwidth of 600 meter. Notice that in the code chunk below, the sigma value used is 0.6. This is because the unit of measurement of childcareSG_ppp.km object is in kilometer, hence the 600m is 0.6km.

kde_childcareSG_600 <- density(childcareSG_ppp.km, sigma=0.6, edge=TRUE, kernel="gaussian")
plot(kde_childcareSG_600)

Computing KDE by using adaptive bandwidth

Fixed bandwidth method is very sensitive to highly skew distribution of spatial point patterns over geographical units for example urban versus rural. One way to overcome this problem is by using adaptive bandwidth instead.

In this section, you will learn how to derive adaptive kernel density estimation by using density.adaptive() of spatstat.

kde_childcareSG_adaptive <- adaptive.density(childcareSG_ppp.km, method="kernel")
plot(kde_childcareSG_adaptive)

We can compare the fixed and adaptive kernel density estimation outputs by using the code chunk below.

par(mfrow=c(1,2))
plot(kde_childcareSG.bw, main = "Fixed bandwidth")
plot(kde_childcareSG_adaptive, main = "Adaptive bandwidth")

Converting KDE output into grid object.

The result is the same, we just convert it so that it is suitable for mapping purposes

gridded_kde_childcareSG_bw <- as.SpatialGridDataFrame.im(kde_childcareSG.bw)
spplot(gridded_kde_childcareSG_bw)

Converting gridded output into raster

Next, we will convert the gridded kernal density objects into RasterLayer object by using raster() of raster package.

kde_childcareSG_bw_raster <- raster(gridded_kde_childcareSG_bw)

Let us take a look at the properties of kde_childcareSG_bw_raster RasterLayer.

kde_childcareSG_bw_raster
class      : RasterLayer 
dimensions : 128, 128, 16384  (nrow, ncol, ncell)
resolution : 0.4170614, 0.2647348  (x, y)
extent     : 2.663926, 56.04779, 16.35798, 50.24403  (xmin, xmax, ymin, ymax)
crs        : NA 
source     : memory
names      : v 
values     : -6.052971e-15, 28.01036  (min, max)

Notice that the crs property is NA.

Assigning projection systems

The code chunk below will be used to include the CRS information on kde_childcareSG_bw_raster RasterLayer.

projection(kde_childcareSG_bw_raster) <- CRS("+init=EPSG:3414")
kde_childcareSG_bw_raster
class      : RasterLayer 
dimensions : 128, 128, 16384  (nrow, ncol, ncell)
resolution : 0.4170614, 0.2647348  (x, y)
extent     : 2.663926, 56.04779, 16.35798, 50.24403  (xmin, xmax, ymin, ymax)
crs        : +proj=tmerc +lat_0=1.36666666666667 +lon_0=103.833333333333 +k=1 +x_0=28001.642 +y_0=38744.572 +ellps=WGS84 +units=m +no_defs 
source     : memory
names      : v 
values     : -6.052971e-15, 28.01036  (min, max)

Notice that the crs property is completed.

Visualising the output in tmap

Finally, we will display the raster in cartographic quality map using tmap package.

tm_shape(kde_childcareSG_bw_raster) + 
  tm_raster("v") +
  tm_layout(legend.position = c("right", "bottom"), frame = FALSE)

Notice that the raster values are encoded explicitly onto the raster pixel using the values in “v”" field.

Comparing Spatial Point Patterns using KDE

In this section, you will learn how to compare KDE of childcare at Ponggol, Tampines, Chua Chu Kang and Jurong West planning areas.

Extracting study area

The code chunk below will be used to extract the target planning areas.

pg = mpsz[mpsz@data$PLN_AREA_N == "PUNGGOL",]
tm = mpsz[mpsz@data$PLN_AREA_N == "TAMPINES",]
ck = mpsz[mpsz@data$PLN_AREA_N == "CHOA CHU KANG",]
jw = mpsz[mpsz@data$PLN_AREA_N == "JURONG WEST",]

Plotting target planning areas

par(mfrow=c(2,2))
plot(pg, main = "Ponggol")
plot(tm, main = "Tampines")
plot(ck, main = "Choa Chu Kang")
plot(jw, main = "Jurong West")

Converting the spatial point data frame into generic sp format

Next, we will convert these SpatialPolygonsDataFrame layers into generic spatialpolygons layers.

pg_sp = as(pg, "SpatialPolygons")
tm_sp = as(tm, "SpatialPolygons")
ck_sp = as(ck, "SpatialPolygons")
jw_sp = as(jw, "SpatialPolygons")

Creating owin object

Now, we will convert these SpatialPolygons objects into owin objects that is required by spatstat.

pg_owin = as(pg_sp, "owin")
tm_owin = as(tm_sp, "owin")
ck_owin = as(ck_sp, "owin")
jw_owin = as(jw_sp, "owin")

Combining childcare points and the study area

By using the code chunk below, we are able to extract childcare that is within the specific region to do our analysis later on.

childcare_pg_ppp = childcare_ppp_jit[pg_owin]
childcare_tm_ppp = childcare_ppp_jit[tm_owin]
childcare_ck_ppp = childcare_ppp_jit[ck_owin]
childcare_jw_ppp = childcare_ppp_jit[jw_owin]

Next, rescale() function is used to trasnform the unit of measurement from metre to kilometre.

childcare_pg_ppp.km = rescale(childcare_pg_ppp, 1000, "km")
childcare_tm_ppp.km = rescale(childcare_tm_ppp, 1000, "km")
childcare_ck_ppp.km = rescale(childcare_ck_ppp, 1000, "km")
childcare_jw_ppp.km = rescale(childcare_jw_ppp, 1000, "km")

The code chunk below is used to plot these four study areas and the locations of the childcare centres.

par(mfrow=c(2,2))
plot(childcare_pg_ppp.km, main="Punggol")
plot(childcare_tm_ppp.km, main="Tampines")
plot(childcare_ck_ppp.km, main="Choa Chu Kang")
plot(childcare_jw_ppp.km, main="Jurong West")

Computing KDE

The code chunk below will be used to compute the KDE of these four planning area. bw.diggle method is used to derive the bandwidth of each

kde_childcare_pg_bw <- density(childcare_pg_ppp.km, sigma=bw.diggle, edge=TRUE, kernel="gaussian")
plot(kde_childcare_pg_bw)
kde_childcare_tm_bw <- density(childcare_tm_ppp.km, sigma=bw.diggle, edge=TRUE, kernel="gaussian") 
plot(kde_childcare_tm_bw)
kde_childcare_ck_bw <- density(childcare_ck_ppp.km, sigma=bw.diggle, edge=TRUE, kernel="gaussian") 
plot(kde_childcare_ck_bw)
kde_childcare_jw_bw <- density(childcare_jw_ppp.km, sigma=bw.diggle, edge=TRUE, kernel="gaussian") 
plot(kde_childcare_jw_bw)

Computing fixed bandwidth KDE

For comparison purposes, we will use 250m as the bandwidth.

kde_childcare_ck_250 <- density(childcare_ck_ppp.km, sigma=0.25, edge=TRUE, kernel="gaussian")
plot(kde_childcare_ck_250)
kde_childcare_jw_250 <- density(childcare_jw_ppp.km, sigma=0.25, edge=TRUE, kernel="gaussian")
plot(kde_childcare_jw_250)
kde_childcare_pg_250 <- density(childcare_pg_ppp.km, sigma=0.25, edge=TRUE, kernel="gaussian")
plot(kde_childcare_pg_250)
kde_childcare_tm_250 <- density(childcare_tm_ppp.km, sigma=0.25, edge=TRUE, kernel="gaussian")
plot(kde_childcare_tm_250)

Nearest Neighbour Analysis

In this section, we will perform the Clark-Evans test of aggregation for a spatial point pattern by using clarkevans.test() of statspat.

The test hypotheses are:

Ho = The distribution of childcare services are randomly distributed.

H1= The distribution of childcare services are not randomly distributed.

The 95% confident interval will be used.

Testing spatial point patterns using Clark and Evans Test

clarkevans.test(childcareSG_ppp,
                correction="none",
                clipregion="sg_owin",
                alternative=c("clustered"),
                nsim=99)

    Clark-Evans test
    No edge correction
    Monte Carlo test based on 99 simulations of CSR with fixed n

data:  childcareSG_ppp
R = 0.55696, p-value = 0.01
alternative hypothesis: clustered (R < 1)

What conclusion can you draw from the test result?

Clark and Evans Test: Choa Chu Kang planning area

In the code chunk below, clarkevans.test() of spatstat is used to performs Clark-Evans test of aggregation for childcare centre in Choa Chu Kang planning area.

clarkevans.test(childcare_ck_ppp,
                correction="none",
                clipregion=NULL,
                alternative=c("two.sided"),
                nsim=999)

    Clark-Evans test
    No edge correction
    Monte Carlo test based on 999 simulations of CSR with fixed n

data:  childcare_ck_ppp
R = 0.98402, p-value = 0.298
alternative hypothesis: two-sided

Clark and Evans Test: Tampines planning area

In the code chunk below, the similar test is used to analyse the spatial point patterns of childcare centre in Tampines planning area.

clarkevans.test(childcare_tm_ppp,
                correction="none",
                clipregion=NULL,
                alternative=c("two.sided"),
                nsim=999)

    Clark-Evans test
    No edge correction
    Monte Carlo test based on 999 simulations of CSR with fixed n

data:  childcare_tm_ppp
R = 0.77079, p-value = 0.002
alternative hypothesis: two-sided

Second-order Spatial Point Patterns Analysis

Analysing Spatial Point Process Using G-Function

The G function measures the distribution of the distances from an arbitrary event to its nearest event. In this section, you will learn how to compute G-function estimation by using Gest() of spatstat package. You will also learn how to perform monta carlo simulation test using envelope() of spatstat package.

Choa Chu Kang planning area

Computing G-function estimation

The code chunk below is used to compute G-function using Gest() of spatat package.

G_CK = Gest(childcare_ck_ppp, correction = "border")
plot(G_CK, xlim=c(0,500))

Performing Complete Spatial Randomness Test

To confirm the observed spatial patterns above, a hypothesis test will be conducted. The hypothesis and test are as follows:

Ho = The distribution of childcare services at Choa Chu Kang are randomly distributed.

H1= The distribution of childcare services at Choa Chu Kang are not randomly distributed.

The null hypothesis will be rejected if p-value is smaller than alpha value of 0.001.

Monte Carlo test with G-fucntion

G_CK.csr <- envelope(childcare_ck_ppp, Gest, nsim = 999)
Generating 999 simulations of CSR  ...
1, 2, 3, ......10.........20.........30.........40.........50.........60
.........70.........80.........90.........100.........110.........120
.........130.........140.........150.........160.........170.........180
.........190.........200.........210.........220.........230.........240
.........250.........260.........270.........280.........290.........300
.........310.........320.........330.........340.........350.........360
.........370.........380.........390.........400.........410.........420
.........430.........440.........450.........460.........470.........480
.........490.........500.........510.........520.........530.........540
.........550.........560.........570.........580.........590.........600
.........610.........620.........630.........640.........650.........660
.........670.........680.........690.........700.........710.........720
.........730.........740.........750.........760.........770.........780
.........790.........800.........810.........820.........830.........840
.........850.........860.........870.........880.........890.........900
.........910.........920.........930.........940.........950.........960
.........970.........980.........990........ 999.

Done.
plot(G_CK.csr)

Tampines planning area

Computing G-function estimation

G_tm = Gest(childcare_tm_ppp, correction = "best")
plot(G_tm)

Performing Complete Spatial Randomness Test

To confirm the observed spatial patterns above, a hypothesis test will be conducted. The hypothesis and test are as follows:

Ho = The distribution of childcare services at Tampines are randomly distributed.

H1= The distribution of childcare services at Tampines are not randomly distributed.

The null hypothesis will be rejected is p-value is smaller than alpha value of 0.001.

The code chunk below is used to perform the hypothesis testing.

G_tm.csr <- envelope(childcare_tm_ppp, Gest, correction = "all", nsim = 999)
Generating 999 simulations of CSR  ...
1, 2, 3, ......10.........20.........30.........40.........50.........60
.........70.........80.........90.........100.........110.........120
.........130.........140.........150.........160.........170.........180
.........190.........200.........210.........220.........230.........240
.........250.........260.........270.........280.........290.........300
.........310.........320.........330.........340.........350.........360
.........370.........380.........390.........400.........410.........420
.........430.........440.........450.........460.........470.........480
.........490.........500.........510.........520.........530.........540
.........550.........560.........570.........580.........590.........600
.........610.........620.........630.........640.........650.........660
.........670.........680.........690.........700.........710.........720
.........730.........740.........750.........760.........770.........780
.........790.........800.........810.........820.........830.........840
.........850.........860.........870.........880.........890.........900
.........910.........920.........930.........940.........950.........960
.........970.........980.........990........ 999.

Done.
plot(G_tm.csr)

Analysing Spatial Point Process Using F-Function

The F function estimates the empty space function F(r) or its hazard rate h(r) from a point pattern in a window of arbitrary shape. In this section, you will learn how to compute F-function estimation by using Fest() of spatstat package. You will also learn how to perform monta carlo simulation test using envelope() of spatstat package.

Choa Chu Kang planning area

Computing F-function estimation

The code chunk below is used to compute F-function using Fest() of spatat package.

F_CK = Fest(childcare_ck_ppp)
plot(F_CK)

Performing Complete Spatial Randomness Test

To confirm the observed spatial patterns above, a hypothesis test will be conducted. The hypothesis and test are as follows:

Ho = The distribution of childcare services at Choa Chu Kang are randomly distributed.

H1= The distribution of childcare services at Choa Chu Kang are not randomly distributed.

The null hypothesis will be rejected if p-value is smaller than alpha value of 0.001.

Monte Carlo test with F-fucntion

F_CK.csr <- envelope(childcare_ck_ppp, Fest, nsim = 999)
Generating 999 simulations of CSR  ...
1, 2, 3, ......10.........20.........30.........40.........50.........60
.........70.........80.........90.........100.........110.........120
.........130.........140.........150.........160.........170.........180
.........190.........200.........210.........220.........230.........240
.........250.........260.........270.........280.........290.........300
.........310.........320.........330.........340.........350.........360
.........370.........380.........390.........400.........410.........420
.........430.........440.........450.........460.........470.........480
.........490.........500.........510.........520.........530.........540
.........550.........560.........570.........580.........590.........600
.........610.........620.........630.........640.........650.........660
.........670.........680.........690.........700.........710.........720
.........730.........740.........750.........760.........770.........780
.........790.........800.........810.........820.........830.........840
.........850.........860.........870.........880.........890.........900
.........910.........920.........930.........940.........950.........960
.........970.........980.........990........ 999.

Done.
plot(F_CK.csr)

Tampines planning area

Computing F-function estimation

Monte Carlo test with F-fucntion

F_tm = Fest(childcare_tm_ppp, correction = "best")
plot(F_tm)

Performing Complete Spatial Randomness Test

To confirm the observed spatial patterns above, a hypothesis test will be conducted. The hypothesis and test are as follows:

Ho = The distribution of childcare services at Tampines are randomly distributed.

H1= The distribution of childcare services at Tampines are not randomly distributed.

The null hypothesis will be rejected is p-value is smaller than alpha value of 0.001.

The code chunk below is used to perform the hypothesis testing.

F_tm.csr <- envelope(childcare_tm_ppp, Fest, correction = "all", nsim = 999)
Generating 999 simulations of CSR  ...
1, 2, 3, ......10.........20.........30.........40.........50.........60
.........70.........80.........90.........100.........110.........120
.........130.........140.........150.........160.........170.........180
.........190.........200.........210.........220.........230.........240
.........250.........260.........270.........280.........290.........300
.........310.........320.........330.........340.........350.........360
.........370.........380.........390.........400.........410.........420
.........430.........440.........450.........460.........470.........480
.........490.........500.........510.........520.........530.........540
.........550.........560.........570.........580.........590.........600
.........610.........620.........630.........640.........650.........660
.........670.........680.........690.........700.........710.........720
.........730.........740.........750.........760.........770.........780
.........790.........800.........810.........820.........830.........840
.........850.........860.........870.........880.........890.........900
.........910.........920.........930.........940.........950.........960
.........970.........980.........990........ 999.

Done.
plot(F_tm.csr)

Analysing Spatial Point Process Using K-Function

K-function measures the number of events found up to a given distance of any particular event. In this section, you will learn how to compute K-function estimates by using Kest() of spatstat package. You will also learn how to perform monta carlo simulation test using envelope() of spatstat package.

Choa Chu Kang planning area

Computing K-fucntion estimate

K_ck = Kest(childcare_ck_ppp, correction = "Ripley")
plot(K_ck, . -r ~ r, ylab= "K(d)-r", xlab = "d(m)")

Performing Complete Spatial Randomness Test

To confirm the observed spatial patterns above, a hypothesis test will be conducted. The hypothesis and test are as follows:

Ho = The distribution of childcare services at Choa Chu Kang are randomly distributed.

H1= The distribution of childcare services at Choa Chu Kang are not randomly distributed.

The null hypothesis will be rejected if p-value is smaller than alpha value of 0.001.

The code chunk below is used to perform the hypothesis testing.

K_ck.csr <- envelope(childcare_ck_ppp, Kest, nsim = 99, rank = 1, glocal=TRUE)
Generating 99 simulations of CSR  ...
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,
71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98,  99.

Done.
plot(K_ck.csr, . - r ~ r, xlab="d", ylab="K(d)-r")

Tampines planning area

Computing K-fucntion estimation

K_tm = Kest(childcare_tm_ppp, correction = "Ripley")
plot(K_tm, . -r ~ r, 
     ylab= "K(d)-r", xlab = "d(m)", 
     xlim=c(0,1000))

Performing Complete Spatial Randomness Test

To confirm the observed spatial patterns above, a hypothesis test will be conducted. The hypothesis and test are as follows:

Ho = The distribution of childcare services at Tampines are randomly distributed.

H1= The distribution of childcare services at Tampines are not randomly distributed.

The null hypothesis will be rejected if p-value is smaller than alpha value of 0.001.

The code chunk below is used to perform the hypothesis testing.

K_tm.csr <- envelope(childcare_tm_ppp, Kest, nsim = 99, rank = 1, glocal=TRUE)
Generating 99 simulations of CSR  ...
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,
71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98,  99.

Done.
plot(K_tm.csr, . - r ~ r, 
     xlab="d", ylab="K(d)-r", xlim=c(0,500))

Analysing Spatial Point Process Using L-Function

In this section, you will learn how to compute L-function estimation by using Lest() of spatstat package. You will also learn how to perform monta carlo simulation test using envelope() of spatstat package.

Choa Chu Kang planning area

Computing L Fucntion estimation

L_ck = Lest(childcare_ck_ppp, correction = "Ripley")
plot(L_ck, . -r ~ r, 
     ylab= "L(d)-r", xlab = "d(m)")

Performing Complete Spatial Randomness Test

To confirm the observed spatial patterns above, a hypothesis test will be conducted. The hypothesis and test are as follows:

Ho = The distribution of childcare services at Choa Chu Kang are randomly distributed.

H1= The distribution of childcare services at Choa Chu Kang are not randomly distributed.

The null hypothesis will be rejected if p-value if smaller than alpha value of 0.001.

The code chunk below is used to perform the hypothesis testing.

L_ck.csr <- envelope(childcare_ck_ppp, Lest, nsim = 99, rank = 1, glocal=TRUE)
Generating 99 simulations of CSR  ...
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,
71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98,  99.

Done.
plot(L_ck.csr, . - r ~ r, xlab="d", ylab="L(d)-r")

Tampines planning area

Computing L-fucntion estimate

L_tm = Lest(childcare_tm_ppp, correction = "Ripley")
plot(L_tm, . -r ~ r, 
     ylab= "L(d)-r", xlab = "d(m)", 
     xlim=c(0,1000))

Performing Complete Spatial Randomness Test

To confirm the observed spatial patterns above, a hypothesis test will be conducted. The hypothesis and test are as follows:

Ho = The distribution of childcare services at Tampines are randomly distributed.

H1= The distribution of childcare services at Tampines are not randomly distributed.

The null hypothesis will be rejected if p-value is smaller than alpha value of 0.001.

The code chunk below will be used to perform the hypothesis testing.

L_tm.csr <- envelope(childcare_tm_ppp, Lest, nsim = 99, rank = 1, glocal=TRUE)
Generating 99 simulations of CSR  ...
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,
71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98,  99.

Done.

Then, plot the model output by using the code chun below.

plot(L_tm.csr, . - r ~ r, 
     xlab="d", ylab="L(d)-r", xlim=c(0,500))

library(pagedown)
pagedown::chrome_print("Hands-on_Ex04_SPPA_spatstat.html")